コンテンツへスキップ

NVIDIA Jetson Nano に OPENCV CuDNN と DNN

OPENCV 4.2の DNN が NVIDIA Cuda に対応

OpenCV の4.2より、OpenCVのdnnが、NVIDIA のGPUに対応していたようです。
しかも、NVIDIAのJetson Nanoでも利用可能でした。

とても驚きのトピックでした。
早速、NVIDA Jetson Nanoに導入し、YOLO / Darknet の推論を動作させてみました。
少し、導入に癖があったので、導入時のメモを公開しておきます。

Led by dlib’s Davis King, and implemented by Yashas Samaga, OpenCV 4.2 now supports NVIDIA GPUs for inference using OpenCV’s dnn module, improving inference speed by up to 1549%!

Pythonから、NVIDIA GPUのCUDAを用いた、OpenCVのDNNを利用する際のコードはBackendとTargetを以下のようにCUDAに設定します。

導入した環境

2020/08/20追記:
JetPack4.4とOPENCV4.4.0でインストールできました。

  • JetPack 4.3 (4.4では、OPENCVコンパイル時に、CuDNNがうまくコンパイルできず)
    Jetpack 4.3 Archive
  • OPENCV 4.3.0 (4.2.0でもインストール出来ました)
created by Rinker
NVIDIA
¥15,600 (2020/10/26 05:12:38時点 Amazon調べ-詳細)

導入方法

NVIDIA Jetson NanoのOpencvコンパイル用のスクリプトは、公式が公開したこともあり、各種エンハンスされ公開されています。
今回は、結構最近に公開されたとみられる、4.3.0向けのスクリプトを利用します。

Build OpenCV on Nvidia Jetson Nano

ポイントは、コンパイルオプションに以下を追加します。

  • WITH_CUDA
  • WITH_CUDNN

インストールスクリプト

コンパイルオプションを追加した、スクリプトを公開しておきます。

./Build_OpenCV.sh でインストールは完了します。
./Build_OpenCV.sh <version> で、指定したバージョンのOPENCVがインストール出来るようです。

実際にコンパイルした際の構成も公開しておきます。

NVIDIA CUDA: YES (ver 10.0, CUFFT CUBLAS FAST_MATH)
NVIDIA GPU arch: 53 62 72 -- NVIDIA PTX archs:
cuDNN: YES (ver 7.6.3)

created by Rinker
NVIDIA
¥15,600 (2020/10/26 05:12:38時点 Amazon調べ-詳細)

参考サイト

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

CAPTCHA